PS: Political Science & Politics published Dietrich and Hayes 2022 "Race and Symbolic Politics in the US Congress" as part of a "Research on Race and Ethnicity in Legislative Studies" section with guest editors Tiffany D. Barnes and Christopher J. Clark.

---

1.

Dietrich and Hayes 2022 reported on an experiment in which a representative was randomized to be White or Black, the representative's speech was randomized to be about civil rights or renewable energy, and the representative's speech was randomized to include or not include symbolic references to the Civil Rights Movement. Dietrich and Hayes 2022 noted (p. 283) that:

When those same symbols were used outside of the domain of civil rights, however, white representatives received a significant punishment. That is, Black respondents were significantly more negative in their evaluations of white representatives who (mis-)used civil rights symbolism to advance renewable energy than in any other experimental condition.

The only numeric results that Dietrich and Hayes 2022 reported for this in the main text are in Figure 1, for an approval rating outcome. But the data file seems to have at least four potential outcomes: the symbolic_approval outcome (strongly disapprove to strongly approve), and the next three listed variables: symbolic_vote (extremely likely to extremely unlikely), symbolic_care (none to a lot), and symbolic_thermometer (0 to 100). The supplemental files have a figure that reports results for a dv_therm variable, but that figure doesn't report results for renewable energy separately by symbolic and non-symbolic.

---

2.

Another result reported in Dietrich and Hayes 2022 involved Civil Rights Movement symbolism in U.S. House of Representatives floor speeches that mentioned civil rights:

In addition to influencing African Americans' evaluation of representatives, our research shows that symbolic references to the civil rights struggle are linked to Black voter turnout. Using an analysis of validated voter turnout from the 2006–2018 Cooperative Election Study, our analyses suggest that increases in the number of symbolic speeches given by a member of Congress during a given session are associated with an increase in Black turnout in the subsequent congressional election. Our model predicts that increasing from the minimum of symbolic speeches in the previous Congress to the maximum in the current Congress is associated with a 65.67-percentage-point increase in Black voter turnout compared to the previous year.

This estimated 66 percentage point increase is at the congressional district level. Dietrich and Hayes 2022 calculated this estimate using a linear regression that predicted the change in Black turnout in a congressional district with a lagged symbolism percentage of 0 and a symbolism percentage of 1. From their code:

mod1<-lm(I(black_turnout-lag_black_turnout)~I(symbolic_percent-lag_symbolic_percent),data=cces)

print(round(predict(mod1,data.frame(symbolic_percent=1,lag_symbolic_percent=0))*100,2))

The estimated change in Black turnout was 85 percentage points when I modified the code to have a lagged symbolism percentage of 1 and a symbolism percentage of 0.

---

These estimated changes in Black turnout of 66 and 85 percentage points seemed implausible as causal estimates, and I'm not even sure that these are correct correlational estimates, based on the data in the "cces_turnout_results.csv" dataset in the hayes_dietrich_replication.zip file.

For one thing, the dataset lists symbolic_percent values for Alabama's fourth congressional district by row as 0.017857143, 0.047619048, 0.047619048, 0.013157895, 0.013157895, 0.004608295, 0.004608295, 0.00990099, 0.00990099, 1, 1, 1 , and 1. For speeches that mentioned civil rights, that's a relatively large jump in the percentage of such speeches that used Civil Rights Movement symbolism, from several values under 5% all the way to 100%. And this large jump to 100% is not limited to this congressional district: the mean symbolic_percent values across the full dataset were 0.14 (109th Congress), 0.02 (110th), 0.02 (111th), 0.03 (112th), 0.09 (113th), 1 (114th), and 1 (115th).

Moreover, the repetition in symbolic_percent within a congressional district is also consistent across the data that I checked. So, for the above district, 0.017857143 is for the 109th Congress, the first 0.047619048 is for one year of the 110th Congress, and the second 0.047619048 is for the other year of the 110th Congress, the two 0.013157895 values are for the two years of the 111th Congress, and so forth. From what I can tell, each dataset case is for a given district-year, but symbolic_percent is calculated only every two years, so that a large percentage of the "I(symbolic_percent-lag_symbolic_percent)" predictors are zero because of a research design decision to calculate the percentage of symbolic speeches per Congress and not per year; from what I can tell, these zeros might not be true zeros in which the percentage of symbolic speeches was the same in the given year and the lagged year.

---

For another thing, the "inline_calculations.R" file in the Dietrich and Hayes 2022 replication materials indicates that Black turnout values were based on CCES surveys and indicates that survey sample sizes might be very low for some congressional districts. The file describes a bootstrapping process that was used to produce the Black turnout values, which were then standardized to range from 0 to 1, but, from the description, I'm not sure how that standardization process works.

For instance, if, in one year the CCES has 2 Black participants for a certain congressional district and neither voted (0% turnout), and the next year is a presidential election year and the CCES had 3 Black participants in that district and all three voted (100% turnout), I'm not sure what the bootstrapping process would do to adjust that to get these congressional district Black turnout estimates to be closer to their true values, which presumably are between 0% and 100%. For what it's worth, of the 4,373 rows in the dataset, black_turnout is NA in 545 rows (12%), is 0 in 281 rows (6%), and is 1 in 1,764 rows (40%).

So I'm not sure how the described bootstrapping process adequately addresses the concern that the range of Black turnout values for a congressional district in the dataset is more extreme than the range of true Black turnout values for the congressional district. Maybe the standardization process addresses this in a way that I don't understand, so that 0 and 1 for black_turnout don't represent 0% turnout and 100% turnout, but, if that's the case, then I'm not sure how it would be justified for Dietrich and Hayes 2022 to interpret the aforementioned output of 65.67 as a 65.67 percentage-point increase.

---

NOTES

1. Dietrich and Hayes 2022 indicated that, in the survey experiment, participants were asked "to evaluate a representative on the basis of his or her floor speech", and Dietrich and Hayes 2022 indicated that the experimental manipulation for the representative's race involved "accompanying images of either a white or a Black representative". But the use of "his or her" makes me curious if the representative's gender was also experimentally manipulated.

2. Dietrich and Hayes 2022 Figure 1 reports [approval of the representative in the condition involving Civil Rights Movement symbolism in a speech about civil rights] in the same panel as [approval of the representative in the condition involving Civil Rights symbolism in a speech about renewable energy]. However, for assessing a penalty for use of Civil Rights Movement symbolism in the renewable energy speech, I think that it is more appropriate to compare [approval of the representative in the condition in which the renewable energy speech used Civil Rights Movement symbolism] to [approval of the representative in the condition in which the renewable energy speech did not use Civil Rights Movement symbolism].

If there is a penalty for using Civil Rights Movement symbolism in the speech about renewable energy, that penalty can be compared to the difference in approval between using and not using Civil Rights Movement symbolism in the speech about civil rights, to see whether the penalty in the renewable energy speech condition reflects a generalized penalty for the use of Civil Rights Movement symbolism.

3. On June 27, I emailed Dr. Dietrich and Dr. Hayes a draft of this blog post with an indication that "I thought that, as a courtesy, I would send the draft to you, if you would like to indicate anything in the draft that is unfair or incorrect". I have not yet received a reply, although it's possible that I used incorrect email addresses or my email went to a spam box.

Tagged with: , ,

I'll hopefully at some point write a summary that refers to a lot of my "comments" posts. But I have at least a few more to release before then, so here goes...

---

Politics, Groups, and Identities recently published Peay and McNair II 2022 "Concurrent pressures of mass protests: The dual influences of #BlackLivesMatter on state-level policing reform adoption". Peay and McNair II 2022 reported regressions that predicted a count of the number of police reform policies enacted by a state from August 2014 through 2020, using a key predictor of the number of Black Lives Matter protests in a state in the year after the killing of Michael Brown in August 2014.

An obvious concern is that the number of protests in a state is capturing the population size of the state. That's a concern because it's plausible that higher population states have legislatures that are more active than smaller population states, so that we would expect these high population states to tend to enact more policies per se, and not merely to enact more police reform policies. But the Peay and McNair II 2022 analysis does not control for the population size of the state.

I checked the correlation between [1] the number of Black Lives Matter protests in a state in the year after the killing of Michael Brown in August 2014 (data from Trump et al. 2018) and [2] the first list of the number of bills enacted by a state that I happened upon, which was the number of bills a state enacted from 2006 to 2009 relating to childhood obesity. The R-squared was 0.22 for a bivariate OLS regression using the state-level count of BLM protests to predict the state-level count of childhood obesity bills enacted. In comparison, Peay and McNair II 2022 Table 2 indicated that the R-squared was 0.19 in a bivariate OLS regression that used the state-level count of BLM protests to predict the state-level count of police reform policies enacted. So the concern about population size seems at least plausible.

---

This is a separate concern, but Figure 6 of Peay and McNair II 2022 reports predicted probabilities, with an x-axis of the number of protests. My analysis indicated that the number of protests ranged from 0 to 87, with only three states having more than 40 protests: New York at 67, Missouri at 74, and California at 87. Yet the widest the 95% confidence interval gets in Figure 6 is about 1 percentage point, at 87, which is a pretty precise estimate given data for only 50 states and only one state past 74.

Maybe the tight 95% confidence interval is a function of the network analysis for Figure 6, if the analysis, say, treats each potential connection between California and the other 49 states as 49 independent observations. Table 2 of Peay and McNair II 2022 doesn't have a sample size for this analysis, but reports 50 as the number of observations for the other analyses in that table.

---

NOTES

1. Data for my analysis.

2. No reply yet from the authors on Twitter.

Tagged with: , ,